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Abstract

■ Although multiple studies characterized the resting-state func-
tional connectivity (rsFC) of the right temporoparietal junction
(rTPJ), little is known about the link between rTPJ rsFC and cog-
nitive functions. Given a putative involvement of rTPJ in both re-
orienting of attention and the updating of probabilistic beliefs,
this study characterized the relationship between rsFC of rTPJ
with dorsal and ventral attention systems and these two cognitive
processes. Twenty-three healthy young participants performed a
modified location-cueing paradigm with true and false prior
information about the percentage of cue validity to assess belief
updating and attentional reorienting. Resting-state fMRI was re-
corded before and after the task. Seed-based correlation analysis
was employed, and correlations of each behavioral parameter
with rsFC before the task, as well as with changes in rsFC after

the task, were assessed in an ROI-based approach. Weaker rsFC
between rTPJ and right intraparietal sulcus before the task was
associated with relatively faster updating of the belief that the
cue will be valid after false prior information. Moreover, relatively
faster belief updating, as well as faster reorienting, were related to
an increase in the interhemispheric rsFC between rTPJ and left
TPJ after the task. These findings are in line with task-based
connectivity studies on related attentional functions and extend
results from stroke patients demonstrating the importance of in-
terhemispheric parietal interactions for behavioral performance.
The present results not only highlight the essential role of parietal
rsFC for attentional functions but also suggest that cognitive pro-
cessing during a task changes connectivity patterns in a
performance-dependent manner. ■

INTRODUCTION

The analysis of functional connectivity in resting-state fMRI
time series has proven to be a useful approach to investi-
gate the functional organization of the brain (Yeo et al.,
2011). In resting-state functional connectivity (rsFC) stud-
ies, participants are not engaged in any particular task dur-
ing data acquisition, and functional brain networks are
revealed, for example, by analyzing spontaneously corre-
lated low-frequency activity fluctuations across the brain
(Biswal, Yetkin, Haughton, & Hyde, 1995). Regions forming
a network at rest also show similar connectivity patterns
during task-related activity (Hoffstaedter et al., 2014; Fox,
Corbetta, Snyder, Vincent, & Raichle, 2006)—and these
findings also relate to the structural connectivity of the
respective brain regions (Greicius, Supekar, Menon, &
Dougherty, 2009; Honey et al., 2009).

In the attention domain, regions that are coactivated in
task-related fMRI studies show strong rsFC (Fox et al.,
2006). More specifically, the dorsal and ventral attentional

networks (Corbetta & Shulman, 2002) can be differentiated
based on their resting-state connectivity patterns. Here,
the temporoparietal junction (TPJ) is positively connected
with the ventral attention network as well as the anterior
insula, the dorsolateral pFC, and the midcingulate cortex
(Bzdok et al., 2013; Kucyi, Hodaie, & Davis, 2012; Mars
et al., 2012). Moreover, these connections are stronger
for the right TPJ (rTPJ) than the left TPJ (lTPJ; Kucyi
et al., 2012). Additionally, recent evidence suggests that
anatomically and functionally distinct rTPJ subregions
may exist (Bzdok et al., 2013; Mars et al., 2012). Strong
rsFC was found between the lateral anterior pFC and a
dorsal rTPJ cluster in the inferior parietal lobule. Con-
versely, an anterior ventral rTPJ subregion was more strongly
connected to the ventral pFC and the anterior insula, and a
posterior subregion showed stronger rsFC with the anterior
medial pFC and a parietal network (Bzdok et al., 2013; Mars
et al., 2012). Similar observations supporting the idea of
functionally independent subregions in TPJ were also
found for the lTPJ using a multivariate analysis of the
BOLD signal (Silvetti et al., 2016).
The TPJ has been associated with a wide range of cog-

nitive functions (see Igelström & Graziano, 2017, for a re-
view), and it is still unclear whether this region mediates
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a general cognitive process or whether it is involved in
multiple domain-specific functions. Distinct subregions
have been postulated to be associated with different
functions, with the anterior region being linked to at-
tention processes and the posterior region to social cog-
nition (Krall et al., 2016; Bzdok et al., 2013). As a major
node within the ventral attention network, the proposed
primary attentional function of the rTPJ is reorienting
attention toward unexpected stimuli, that is, acting as a
“circuit breaker” for the dorsal top–down attention system
consisting of the intraparietal sulci (IPS) and FEFs (Corbetta,
Patel, & Shulman, 2008; Corbetta & Shulman, 2002). How-
ever, rTPJ has more recently also been associated with the
more general function of “contextual updating” (Mengotti,
Dombert, Fink, & Vossel, 2017; Vossel, Mathys, Stephan, &
Friston, 2015; Geng & Vossel, 2013; Doricchi, Macci, Silvetti,
& Macaluso, 2010), that is, the ability to update internal
models of the current behavioral context for creating
appropriate expectations and responses.
It remains to be investigated whether rTPJ subserves

both reorienting and updating, respectively, and whether
different rTPJ connectivity patterns underlie the two
processes. Using modifications of the classical location-
cueing paradigm (Posner, 1980), reorienting of visuo-
spatial attention, and belief updating can be investigated
within the same task. To this end, the percentage of cue
validity (i.e., the proportion of valid and invalid trials) is
manipulated throughout the experiment, and the par-
ticipants have to infer the actual cue validity level (i.e.,
the probability that the cue will be valid in a given trial).
Whereas reorienting is reflected in the RT difference be-
tween unexpected and expected target locations, belief
updating is assessed by parameters of computational
learning models based on single-trial RTs reflecting the
adaptation of behavior to the inferred validity of the spa-
tial cue (e.g., Mengotti et al., 2017; Vossel et al., 2014).
Although little is known about the link between TPJ rsFC

and cognitive functions, first evidence for a significant rela-
tionship between rsFC networks and deficits in reorienting
of attention has been provided by studies in stroke patients
(Siegel et al., 2016; Corbetta et al., 2015; Baldassarre et al.,
2014; Carter et al., 2010; He et al., 2007). For instance, im-
paired reorienting towards contralesional targets has
been related to decreased interhemispheric rsFC of the
IPS (Baldassarre et al., 2014; Carter et al., 2010; He
et al., 2007) as well as decreased interhemispheric rsFC
of the supramarginal gyri (He et al., 2007).
Given that the role of rsFC of rTPJ for the trial-wise up-

dating of probabilistic beliefs has not yet been addressed
and that rTPJ is putatively involved in both reorienting of
attention and belief updating, this study aimed at char-
acterizing the relationship between rsFC of rTPJ and
these two cognitive processes. Task-based fMRI studies
employing effective connectivity analyses have shown that
connectivity changes between regions of the dorsal and
ventral attention network are related to behavioral perfor-
mance in spatial attention paradigms (Vossel et al., 2015;

Vossel, Weidner, Driver, Friston, & Fink, 2012; Weissman
& Prado, 2012; Wen, Yao, Liu, & Ding, 2012). Effective
connectivity between lTPJ and rTPJ has been related to
enhanced filtering of distractors (Vossel, Weidner, Moos,
& Fink, 2016). Connectivity from rTPJ to the right IPS
(rIPS) and from rTPJ to the right inferior frontal gyrus
(rIFG) has been associated with reorienting of attention,
especially when invalid targets are less expected (Vossel
et al., 2012). Moreover, connectivity from rTPJ to FEF
has been related to trial-wise belief updating about cue va-
lidity in a saccadic version of the location-cueing paradigm
(Vossel et al., 2015).

In this study, we asked if reorienting and belief updat-
ing are related to rTPJ connectivity patterns at rest before
the task—as well as to rsFC changes after the task. We
chose an rTPJ seed linked to belief updating based on pre-
vious fMRI and TMS work (Mengotti et al., 2017; Vossel
et al., 2015). In a first step, we characterized the rsFC pat-
tern of this particular rTPJ region. In a second step, we cor-
related measures of belief updating and reorienting in a
modified location-cueing task with rsFC of this area with
dorsal and ventral network nodes before the task and with
the rsFC changes from before to after the task. We predicted
that the resting-state network architecture of rTPJ with the
ventral and dorsal systemwould be related to behavioral per-
formance, andwe explored the specificity of the resulting as-
sociations for reorienting and belief updating, respectively.

METHODS

Participants

The study was approved by the ethics committee of the
German Psychological Society, and written informed con-
sent was obtained from all participants. All procedures in
this study followed the Code of Ethics of the World
Medical Association (Declaration of Helsinki).

For the resting-state measurements, we recruited 29
healthy volunteers with no history of neurological or psychi-
atric disorders. They had a normal or corrected-to-normal
vision and were naïve to the purpose of the experiment.
All participants were right-handed, as assessed with the
Edinburgh Handedness Inventory (Oldfield, 1971).

After data acquisition, six participants had to be excluded
from further analysis: one because of poor task perfor-
mance (more than 2 SDs below the mean accuracy of all
participants), one for a technical problem with the record-
ing of the manual responses, and four because of excessive
head movements (>1° in rotation parameters) during
resting-state fMRI. Therefore, the final sample comprised
23 participants (14 women; age range = 20–36 years, mean
age = 27 years).

Procedure

The data for this study were derived from a more compre-
hensive neurostimulation experiment, which consisted of
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three sessions distributed over 3 days. According to a
within-participant crossover design, each participant under-
went two experimental sessions preceded by a preparation
session. The data collected on the first day consisted of a
high-resolution anatomical scan, preparatory measures for
the neurostimulation, and practice of the experimental
paradigm. In the second and third experimental sessions,
active, continuous theta burst stimulation (cTBS) or “sham
stimulation” was delivered (note that because of the use of
a placebo [sham] coil, the sham stimulation did not involve
any magnetic stimulation). In the sham session, the placebo
coil was placed over the vertex. Each day started with a
resting-state scan (∼7 min duration), during which par-
ticipants had no task apart from maintaining fixation on a
central cross. Subsequently, the active motor threshold
was determined to define the intensity of the stimulation,
and the stimulation was delivered outside the scanner. After
the stimulation (sham or active cTBS), the participant was
transported to the scanner, and task-based fMRI (∼23 min
duration) as well as a second resting-state scan were per-
formed. The task-based fMRI measurements started on av-
erage 5.37 min (SD = 43 sec) after the neurostimulation.

For our present research question on the role of rTPJ
functional connectivity for belief updating and reorient-
ing, we here exclusively focus on the resting-state scans
and behavioral data from the task-based fMRI of the sham
session of the study. Given that the sham session could
be performed before or after the active cTBS session ac-
cording to a crossover design, we tested for any session
order effects in this data set (see below).

Paradigm during Task-based fMRI

We used a modified version of a location-cueing para-
digm with central cueing (Posner, 1980) to assess atten-
tional reorienting and belief updating about cue validity
(%CV), as described in the study of Mengotti et al.

(2017). Stimuli were presented on a 30-in. LCD screen
behind the scanner at a distance of 245 cm. Participants
saw the monitor via a movable mirror installed on top of
the head coil. As a fixation point during the total duration
of the task, a central diamond on a gray background was
presented (see Figure 1A). In each trial, a spatial cue, con-
sisting of an arrowhead pointing to either the left or right
side, appeared for 400 msec to indicate in which hemifield
the target would appear. After an 800 msec SOA, two dia-
monds appeared for 350 msec on the left and right side of
the fixation point (5.8° eccentric in each visual field). The
target was a diamond with a missing upper or lower
corner. Participants had to press a button with the index
or middle finger of their right hand to indicate which part
of the target diamond (upper or lower corner) was miss-
ing. The response mapping was counterbalanced across
participants. The intertrial interval was 2000 msec. During
each experimental session, participants performed one
run of eight blocks. Each block comprised 48 trials, result-
ing in 384 trials. The percentage of %CV, that is, the ratio of
valid and invalid trials, was manipulated between blocks but
was kept constant within each block. %CV within each block
amounted to ∼90% (87.5%), ∼70% (71%), ∼30% (29%), or
∼10% (12.5%), respectively. In the 30% and 10% CV blocks,
the cue was counterpredictive, as the majority of trials were
invalid. At the beginning of each block, precise information
about the %CVwas given. However, in half of the blocks, the
given information was false—resulting in misleading prior
expectations. In these false blocks, the expected %CV was
inverted concerning the true %CV. Participants were not
instructed how many blocks were false and how distant
the false %CV would be from the true one. They only knew
that, in some blocks, false information could be given.
Hence, the participants were instructed to use the spatial
cues depending on how much they “trust” them and to es-
timate the true %CV. At the end of each block, participants
had to explicitly state their estimated %CV using a 9-point

Figure 1. (A) Experimental paradigm with one example trial (valid trial). At the beginning of each block, the %CV (either true or false) was
shown. This value was used as prior before the observation of the first trial in the modeling approach. On each trial, participants indicated
whether the upper or lower corner of the target was missing. The participants were asked to maintain central fixation throughout the
experiment. (B) VEs (RT invalid minus RT valid; mean ± SEM ) for each true and false %CV block. The VEs vary linearly with actual %CV.
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scale ranging from 10% to 90%, as well as the confidence in
their rating. For the main trials, RTs and accuracy of the tar-
get discrimination were measured. Each participant com-
pleted a short practice before each experimental session
consisting of two runs: One consisting of one block with a
constant true 80%CV and the other comprising three blocks,
with two blocks with true and one with false prior informa-
tion about %CV.
Each participant was presented with the same sequence

of trials within each block with two different block se-
quences for participants. Using constant trial sequences
is a standard procedure in computational studies of learn-
ing processes that require inference on conditional prob-
abilities in time series (e.g., Iglesias et al., 2013; Daunizeau
et al., 2010). The duration of the paradigm was around
23 min.

Behavioral Data Analysis

Reorienting of Attention—Validity Effects

RTs were measured for each trial to allow an analysis of
the behavioral data. Anticipations (RT < 100 msec), mis-
ses, and incorrect responses were excluded from the
analyses, and mean RT was computed separately for valid
and invalid trials.
The above-described paradigm requires the orienta-

tion of attention to the most likely target location. In valid
trials with %CV > 50%, participants direct their attention
covertly to the position indicated by the cue. The validity
effect (VE) is the difference in RTs between invalid and
valid trials and reflects the time necessary to reorient
attention from an expected to an unexpected location
(Posner, 1980). However, in the present paradigm, %CV
was <50% in some blocks. In these counterpredictive
blocks, the target was more likely to appear at the uncued
location. To test whether the participants’ behavior was af-
fected by the different %CV levels (i.e., if they indeed in-
ferred the actual %CV in the different blocks), the VE was
calculated separately for each %CV block (see Figure 1B).
For the group-level analyses, averaged blockwise accu-

racy scores expressed in percentage of correct responses
were used in a 2 × 2 within-participant ANOVA with the
factors Prior (true, false) and Validity (valid, invalid).
Because the manipulation of %CV was expected to mainly
influence the speed of responding, mean RTs in each %CV
block were subjected to a 2 × 4 × 2 within-participant
ANOVA with the factors Prior (true, false), Block (90%
CV, 70%CV, 30%CV, 10%CV), and Validity (valid, invalid).
Because the blockwise VE was expected to vary linearly
with the actual %CV, a subsequent 2 × 4 ANOVA on the
VE (RT difference between invalid and valid trials) with the
factors Prior (true, false) and Block (90%CV, 70%CV, 30%
CV, 10%CV) was used. Here, we expected to find a signif-
icant linear trend for the Prior × Block interaction effect,
because this would reflect the adaptation of behavior to
%CV, that is, inference of the actual %CV levels by the

participants. All group-level analyses were performed with
SPSS (SPSS Statistics for Windows, Version 25.0, IBM).
Results from these analyses are reported at a significance
level of p < .05 after Greenhouse–Geisser correction
where applicable.

To obtain an overall measure of reorienting speed for
the correlation analyses with rTPJ rsFC (see below), the
sign of the VE was inverted for counterpredictive blocks
(where invalid trials were more frequent than valid trials),
and the blockwise VEs were averaged. This measure
should reflect the general magnitude of the reorienting
costs at unexpected locations (i.e., target locations with
an actual probability <50%, irrespective of the direction
of the cue). To check for any session order effects, we
conducted a two-sample t test on the mean VE between
those participants who completed the sham before and
after the cTBS session.

Belief Updating—Computational Modeling

A measure of belief updating about the actual validity of
the spatial cue in this paradigm was derived from a com-
putational learning model. For the modeling, single-trial
RT was converted to response speed (RS = 1/RT) because
RSs tend to be more normally distributed (Brodersen
et al., 2008; Carpenter & Williams, 1995). To quantify belief
updating about the %CV in true and false blocks, we ap-
plied a Rescorla Wagner (RW) model to trial-wise RSs in
the different blocks. Because of the smaller number of tri-
als entering the model and the block structure of the task
with constant %CV in each block, a RW model, rather than
a previously used hierarchical volatility-based Bayesian
model (Vossel et al., 2014, 2015), was chosen, as in the
study of Mengotti et al. (2017). It has been shown that
the RW learning rate is significantly correlated with the
Bayesian parameter describing the updating of %CV
(Vossel et al., 2014). In both types of models, updating
is influenced by the weighting of prediction errors (the
discrepancy between observed and predicted outcomes)
by a learning rate. Each block was modeled separately,
and a higher learning rate was expected for false than true
blocks.

In the RW model, updating of the belief that a cue will
be valid in a single given trial equals the product of a
learning rate α and the prediction error δ(t), that is, the
difference between the observed and the predicted out-
come in the respective trial t. The updated prediction
after experiencing the trial t, P(t), is then given by the
sum of the prediction from the previous trial and the
product of learning rate and prediction error.

P tð Þ ¼ P t−1ð Þ þ αδ tð Þ

Hence, the learning rate α determines the extent to
which prediction errors influence the participant’s belief
from trial to trial. Considering that the learning rate α
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affects the steepness of the exponential decay of the in-
fluence of preceding trials (Rushworth & Behrens, 2008),
it also reveals to which extent past events change the par-
ticipants’ predictions. To estimate the RW learning rate α
in each block, single-trial RSs were used. A linear relation-
ship between RS(t) and the prediction before the obser-
vation of the outcome of the trial P(t − 1) was assumed by
the response model, which was employed to map from
the participant’s belief about %CV to observed responses
(see Mengotti et al., 2017; Vossel et al., 2014, for a similar
procedure).

RS tð Þ ¼ ζ1 valid þ ζ2P t−1ð Þ for valid trials
ζ1 invalid þ ζ2 1−P t−1ð Þ� �

for invalid trials

�

ζ1_valid, ζ1_invalid, and ζ2 are additional participant-specific
parameters that are estimated from the data. ζ1_valid and
ζ1_invalid define the constants of the linear equation (i.e., the
overall levels of RSs), and ζ2 governs the slope of the affine
function (i.e., the strength of the increase in RS with increased
estimated %CV P(t − 1)). The learning rate α and the three pa-
rameters from the observation model were estimated from
trial-wise RSs using variational Bayes as implemented in the
HGF toolbox (www.translationalneuromodeling.org/tapas/)
running on MATLAB (R2014a, The MathWorks, Inc.).
Variational Bayes optimizes the (negative) free-energy F as a
lower bound on the log evidence, such that maximizing
F minimizes the Kullback-Leibler divergence between
exact and approximate posterior distributions or, equiva-
lently, the surprise about the inputs encountered (for de-
tails, see Friston, Mattout, Trujillo-Barreto, Ashburner, &
Penny, 2007).

The learning rate α was averaged separately for the
blocks with true and false prior information concerning
%CV. As in our previous study (Mengotti et al., 2017),
we expected a higher learning rate α in blocks with false
prior information, because here contextual updating is
required to estimate the true %CV. To test this assump-
tion, a paired-sample t test on the learning rate α was cal-
culated to compare blocks with true and false priors.

To obtain a measure of belief updating for the correla-
tion analyses with rTPJ rsFC (see below), the difference in
learning rates between false and true blocks was used.
This difference score reflects the differential updating after
false prior information has been provided. Additionally, to
check for a session order effect, we conducted a two-
sample t test on this difference score.

Resting-state fMRI Data Acquisition
and Preprocessing

During the two resting-state measurements before and
after task-based fMRI, participants had no task apart from
maintaining fixation on a central cross. Using a 3T MRI
System (Trio; Siemens), 180 T2*-weighted volumes were
acquired applying an EPI sequence with BOLD contrast

with a repetition time of 2.2 sec and an echo time of
30 msec. Each volume consisted of 36 axial slices with in-
terleaved slice acquisition. The field of view was 200 mm,
using a 64 × 64 image matrix, which resulted in a voxel
size of 3.1 × 3.1 × 3.3 mm3. The first five volumes were dis-
carded from the analysis to allow for T1 equilibration effects.
The remaining 175 volumes were analyzed using the
Statistical Parametric Mapping software SPM12 (Wellcome
Department of Imaging Neuroscience; Friston et al., 1995;
www.fil.ion.ucl.ac.uk/spm) and FC toolbox CONN, Version
18.a (McGovern Institute for Brain Research, Massachusetts
Institute of Technology; Whitfield-Gabrieli & Nieto-Castanon,
2012; www.nitrc.org/projects/conn). For the preprocess-
ing, images were bias-corrected. Slice acquisition time
differences were corrected using sinc interpolation to
the middle slice. During spatial realignment, a mean EPI
image was computed for each participant and spatially
normalized to the MNI template using the segmentation
function. Subsequently, the obtained transformation was
applied to the individual EPI volumes to translate the im-
ages into standard MNI space and resample them into 2 ×
2 × 2 mm3 voxels. Finally, the normalized images were
spatially smoothed using an 8-mm FWHM Gaussian
kernel.
The pre- and posttask resting-state data were passed

through several additional preprocessing steps using the
CONN toolbox (Whitfield-Gabrieli & Nieto-Castanon,
2012) for MATLAB R2017b (The MathWorks, Inc.). Data
were detrended and high-pass filtered (0.01 Hz). Head
movement artifacts were removed with the artifact detec-
tion tools scrubbing procedure. White matter, cerebrospinal
fluid, and movement parameters were extracted as nuisance
covariates following the CompCor strategy (Behzadi,
Restom, Liau, & Liu, 2007) and taken out by linear regres-
sion. Temporal derivatives of these confounds were also in-
cluded in the linear model, accounting for time-shifted
versions of spurious variance.

Seed-Based Functional Connectivity of rTPJ

rsFC was analyzed with seed-based correlation analysis.
This method computes the temporal correlation between
the BOLD activity from a given seed voxel to all other
voxels in the brain using a general linear model approach
(Fox et al., 2005; Biswal et al., 1995).
First, to identify areas showing positive or negative

functional connectivity with the specific rTPJ region, a
voxel-wise map was computed for the seed ROI, which
was an 8-mm radius sphere centered at x = 56, y =
−44, z = 12. This MNI coordinate was derived from a
previous fMRI and TMS study investigating belief updat-
ing and reorienting (Mengotti et al., 2017; Vossel et al.,
2015). The BOLD time series were averaged over all vox-
els in the seed ROI and the voxel-wise Pearson correla-
tion coefficients between that ROI, and all other voxels
were computed. After that, the Fisher z transformation
was applied.
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Participant-specific contrast images reflecting standard-
ized correlation coefficients were used for the second-level
random-effects analysis in SPM. We computed one-sample
t tests to determine the main positive and negative rsFC
maps of the rTPJ seed across pre- and posttask runs,
respectively. To investigate differences in rsFC from pre-
to posttask, we computed paired t tests. All results were
thresholded at a voxel-wise p < .05 FWE-corrected with
an extent threshold of ≥20 voxels. The locations of ac-
tivation were derived from the Anatomy Toolbox for those
regions that have been mapped cytoarchitectonically
(Eickhoff et al., 2005). Additionally, to check for any ses-
sion order effects, we conducted a within-participant
ANOVA with the factors Session Order (active cTBS first,
sham first) and Run (pretask, posttask) on the rsFC.

Brain–Behavior Relationship

To examine the relationship between pretask rsFC and
the parameters of reorienting of attention and belief up-
dating in the location-cueing task, we computed the
Pearson correlation coefficient between each behavioral
parameter (mean VE and the difference in learning rates
α for false and true blocks) and the strength of rTPJ rsFC
and six target ROIs. These six ROIs were chosen to com-
prise the critical regions of the dorsal and ventral attentional
networks in both hemispheres (lIPS, rIPS, lFEF, rFEF, lTPJ,
and rIFG). The coordinates of these ROIs were extracted
from the local maxima in the respective anatomical areas
in the main positive and negative rsFC maps of the rTPJ
seed across pre- and posttask runs. The same analyses were
performed using the differences in rTPJ connectivity from
post- to pretask to investigate the relationship of the behav-
ioral parameters with changes in rsFC after the task.
To check if outliers drove the correlations, we calculated

Cook’s distance (Cook, 1977). If Cook’s distance values
were >1 (Stevens, 1996) for a given participant, the corre-
lations were recalculated without this participant to check if
the significant relationship persisted.
As control analyses, we also performed the above-

mentioned analyses with more general task measure-
ments, that is, overall RS and accuracy.
To investigate the specificity of our results for reorient-

ing or belief updating, respectively, we used stepwise lin-
ear regression analysis with rsFC as dependent and the
two behavioral parameters as independent predictor
variables. This analysis determines the smallest set of pre-
dictor variables with the best model fit. The (minimum)
corrected Akaike information criterion (AICC) was used
to evaluate the effect of adding or removing the reorient-
ing or belief updating parameter to/from the regression
model. Here, it should be noted that both measures
should be independent in the present paradigm, because
we used a global measure for reorienting (averaged over
all blocks with reversed signs for blocks with counter-
predictive cues).

Eye Movement Recording

To verify that participants followed the instructions to
maintain fixation, eye movements were monitored with
an Eye-Link 1000 (SR Research) eye-tracking system with
a sampling rate of 500 Hz during the practice session
outside the scanner. At the start of the experiment, cali-
bration and validation of the eye tracker were performed
(validation error <1° of visual angle). Analysis of the data
was performed using MATLAB (R2014a, The MathWorks,
Inc.). The timing and stimulus configurations of the prac-
tice session were identical to the fMRI task. However, the
targets were presented with an eccentricity of 8.9°. The
critical period analyzed for gaze deviations from the cen-
ter was the time window between the presentation of
the cue and the target display (cue–target period).
Saccades were identified as gaze deviations from fixation
>1.5° visual angle in the cue–target period, and they
were determined and expressed as a percentage score
over the total number of trials. Three participants had
to be excluded from this analysis because of the bad
quality of the signal. Therefore, eye movement data from
20 of the 23 participants were analyzed.

RESULTS

Behavioral Results

Participants maintained fixation on average in 96% (SEM=
1.2%) of the trials. Overall, the average accuracy amounted
to 95% (SEM = 1.56). The within-participant ANOVA on
accuracy scores with the factors Prior (true, false) and
Validity (valid, invalid) revealed a main effect of Validity,
F(1, 22) = 5.1, p = .034, ηp

2 = .189) with higher accuracy
in valid trials. The factor Prior and the interaction did not
reach significance.

The within-participant ANOVA on mean RT in each
condition with the factors Prior (true, false), Block (90%
CV, 70%CV, 30%CV, 10%CV), and Validity (valid, invalid)
revealed a main effect of Prior (F(1, 22) = 7.8, p = .011,
ηp
2 = .261), with higher RTs in false blocks, a main effect

of Validity (F(1, 22) = 20.9, p = 1.5 × 10−4, ηp
2 = .487),

with higher RTs in invalid trials, aswell as a significant Prior×
Block × Validity interaction (F(1.46, 32.04) = 22.7, p= 3 ×
10−10, ηp

2 = .508). To further interpret the interaction, we
subjected the difference in RTs between invalid and valid
trials, that is, the VE, to a 2 × 2 within-participant ANOVA
with the factors Prior (true, false) and Block (90%CV,
70%CV, 30%CV, 10%CV). The linear trend for the Prior ×
Block interaction was significant (F(1, 22) = 33.3, p =
8 × 10−6, ηp

2 = .602). As expected, VEs varied linearly
with CV%, and this effect had a reversed direction in false
blocks reflecting learning of the actual %CV (see Figure 1B).
This confirms that the participants inferred the actual %CV
levels in the present paradigm.

Regarding belief updating, we compared the learning rate
α of the RW learning model between blocks with true and
false priors using a paired-samples t test. As hypothesized,
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this revealed a significant difference (t(22) = −2.7, p =
.012), with a higher learning rate in blocks with false priors,
that is, when more belief updating was required.

Because the study was performed on multiple days, we ad-
ditionally tested with dedicated two-sample t tests whether
there were any session effects for the mean VE or the belief
updating parameter (i.e., the difference between true and false
blocks of the learning rateα). These analyses did not reveal any
significant session order effects (VE: t(21) = 0.38, p =
.708; learning rate difference: t(21) = −0.993, p = .332).

We also checked if themean VE and the difference score of
the learning rate α were correlated. The correlation between
both measures was not significant (r = −.235, p = .28).

rsFC of rTPJ

Seed-based analysis of rsFC of the specific rTPJ coordi-
nate across pre- and posttask runs revealed significant
positive rsFC with bilateral TPJ, rIFG, and right FEF.
Significant negative rsFC of the rTPJ was found with the

left superior frontal gyrus, the left superior orbital gyrus,
and the cerebellum (Figure 2; see Table 1 for full list).
The comparison between pre- and posttask runs did

not reveal any significant results. As for behavioral data,
there were also no significant session order effects.

Linking rTPJ Functional Connectivity and Behavior

Reorienting of Attention

ROI-based correlation analyses between behavior and
rsFC of rTPJ were performed with six predefined ROIs,
with coordinates derived from the local maxima in the re-
spective anatomical region from the rsFC maps of rTPJ
across both resting-state runs (lTPJ: x = −62, y = −52,
z = 14; rIFG: x = 42, y = 12, z = 12; lFEF: x = −56,
y = −2, z = 48; rFEF: x = 42, y = 2, z = 46; lIPS: x =
−26, y = −72, z = 42; rIPS: x = 26, y = −72, z = 56).
Pretask rsFC of rTPJ was not significantly related to the
general speed of reorienting, that is, to the overall mag-
nitude of the VE. However, the VE was negatively
correlated with the change in rsFC between rTPJ and lTPJ
from pre- to posttask (r = −.59, p = .003; Figure 3).
Stronger interhemispheric rsFC between lTPJ and rTPJ after
(as compared with before) the task was associated with a
smaller overall VE. The analysis of Cook’s distance revealed
one outlier (>1). However, the correlation remained signif-
icant when excluding this outlier (r = −.44, p = .042). A
stepwise linear regression revealed that besides the VE,
the belief updating parameter also contributed to the expla-
nation of the rsFC changes between rTPJ and lTPJ (AICC =
−86.52 for both predictor variables vs. AICC = −85.26 for
VE as the only predictor variable).

Figure 2. Positive (red) and negative (blue) rsFC of rTPJ across both
resting-state runs.

Table 1. rsFC Pattern of the rTPJ across Both Resting-state Runs

Region Cluster Size Side t

Peak Voxel (MNI Coordinates)

x y z

Positive functional connectivity

Superior/middle temporal gyrus (TPJ) 2457 R 39.07 60 −44 12

Superior/middle temporal gyrus (TPJ) 1080 L 14.24 −62 −52 14

IFG 20 R 8.43 40 30 4

Precentral gyrus (FEF) 45 R 8.08 42 2 46

Negative functional connectivity

Superior frontal gyrus 82 L 9.59 −22 16 52

Middle cingulate gyrus/white matter 20 R 8.62 18 −8 40

Posterior cingulate gyrus/white matter 29 L 8.53 −4 −34 12

Superior/middle orbital gyrus 40 L 8.12 −26 60 −12

Cerebellum 92 R 7.82 4 −82 −26

R = right; L = left.

1136 Journal of Cognitive Neuroscience Volume 32, Number 6

https://www.mitpressjournals.org/action/showImage?doi=10.1162/jocn_a_01543&iName=master.img-001.jpg&w=228&h=92


Belief Updating

For the association between behavior and pretask rsFC,
we found a significant negative correlation between belief
updating (as reflected in the difference in learning rates
for false and true blocks) and the strength of rsFC between
the rTPJ and rIPS (r = −.44, p = .037; Figure 4). Here,
stronger rsFC between rTPJ and rIPS before the task was
related to reduced updating (i.e., a smaller difference in
learning rates). According to a stepwise linear regression,
the belief updating parameter was the only relevant pre-
dictor variable (i.e., the VE was eliminated from the re-
gression model) for rTPJ–rIPS connectivity. All of Cook’s
distance values were below 1. Regarding rTPJ rsFC after
(as compared with before) the task, a significant positive

correlation between updating and the change of rsFC
between the rTPJ and lTPJ from pre- to posttask was ob-
served (r = .43, p = .043; Figure 4). Faster updating (in
false vs. true blocks) was associated with stronger inter-
hemispheric rsFC between lTPJ and rTPJ after (as com-
pared with before) the task. This result is in line with
the stepwise regression described above, according to
which both belief updating and reorienting contributed
to the change in rsFC.

Control Analyses

Additional correlation analyses were performed be-
tween the rsFC of rTPJ and more general behavioral

Figure 3. Correlation of the
parameter of reorienting (mean
VE) and the change in rsFC
between the rTPJ and the lTPJ
after (as compared with before)
the task.

Figure 4. Correlations of belief
updating and the rsFC between
the rTPJ and the rIPS before the
task as well as between the rTPJ
and lTPJ after (as compared
with before) the task.
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parameters, that is, overall RS and accuracy. In none of
the six ROIs, these analyses revealed significant effects
(all ps > .05).

DISCUSSION

This study investigated whether the resting-state network
architecture of rTPJ with ventral and dorsal attention net-
work nodes is related to belief updating and reorienting.
In a modified location-cueing paradigm, blockwise changes
of the %CV were implemented, and true and false prior
information about the %CV was provided before each
block. Higher functional connectivity between rTPJ and
rIPS before the task was associated with a smaller differ-
ence in learning rates between false and true blocks, that
is, with slower belief updating after false priors. Increases
in connectivity between rTPJ and lTPJ after the task were
related to both relatively faster belief updating in false
blocks and faster reorienting (smaller VEs).

Regarding the behavioral results, we replicated pre-
vious findings with the same experimental paradigm
(Mengotti et al., 2017). As expected, VEs varied linearly
with %CV, and this effect had a reversed direction in false
blocks, reflecting learning of the actual %CV. Moreover,
participants had a higher learning rate in blocks with false
as compared with true prior information (when belief
updating was required).

Our results regarding the rsFC pattern of the specific
rTPJ coordinate are consistent with previous studies on
rsFC of rTPJ (Bzdok et al., 2013; Kucyi et al., 2012;
Mars et al., 2012; Shulman et al., 2009), showing positive
connectivity between rTPJ and other regions of the ven-
tral attention network, that is, rIFG. Our positive rsFC
pattern especially relates to findings of the rsFC of an an-
terior cluster of the rTPJ, which has been associated with
attentional functions in task-based studies (Bzdok et al.,
2013). Furthermore, our findings on the negative rsFC
are in line with previous work reporting negative con-
nectivity of rTPJ with frontal regions and the cerebellum,
although not all previously described regions showed
significant results in this study (Kucyi et al., 2012).

Investigating the association between the rsFC of the
rTPJ and the behavioral parameters from the location-
cueing paradigm revealed specific relationships for be-
lief updating and reorienting, respectively. As a note of
caution, these findings were derived from a correlational
approach and thus cannot be interpreted as causal effects.
General behavioral parameters such as mean RS and ac-
curacy were not significantly related to the rsFC patterns
of rTPJ. Faster belief updating in false versus true blocks
was associated with weaker rsFC of rTPJ with rIPS before
the task. IPS is regarded as a key region of the dorsal
system responsible for top–down control and selection
(Corbetta, Kincade, Ollinger, McAvoy, & Shulman, 2000;
Hopfinger, Buonocore, & Mangun, 2000; Kastner, Pinsk,
De Weerd, Desimone, & Ungerleider, 1999). Hence, the
intrahemispheric rIPS–rTPJ connection may reflect the

strength of the reliance on top–down information, that
is, in our case, the a priori %CV. Firm reliance on this prior
information may then lead to slower updating of %CV,
that is, to a smaller influence of prediction errors on the
trial-wise estimation of the probability that the cue will be
valid (as parameterized in the learning rate parameter of
the RW model). In line with this notion, first evidence ex-
ists for an involvement of IPS in contextual updating in a
sustained attention task. Here, TMS over IPS suppressed
TPJ responses for differentiating targets and nontargets,
suggesting that IPS gives input to TPJ to shape stimulus-
evoked responses (Leitão, Thielscher, Tunnerhoff, &
Noppeney, 2015).
Regression analysis revealed that rsFC between rTPJ

and rIPS was related to belief updating rather than re-
orienting. This may seem at odds with previous studies
showing an involvement of IPS in reorienting of spatial
attention (Vossel et al., 2012; Weissman & Prado, 2012;
Wen et al., 2012; Chica, Bartolomeo, & Valero-Cabre,
2011). However, our present results concern the state
of the network architecture before the task, rather than
connectivity during the task. Hence, the IPS—or connec-
tivity between rTPJ and IPS (see Vossel et al., 2012)—may
still play an essential role in online task performance.
This, together with the network effects of rTPJ neurosti-
mulation, will be addressed in our future work.
When investigating the interhemispheric connectivity

between rTPJ and lTPJ, we found that better behavior
(relatively faster updating in false blocks and faster re-
orienting) was accompanied by an increase in the rsFC
between the rTPJ and the lTPJ after (as compared with
before) the task. Regression analysis revealed that both
reorienting and belief updating contributed to the expla-
nation of interhemispheric rsFC changes between rTPJ
and lTPJ. It has been suggested that both lTPJ and rTPJ
are vital for updating the statistical contingency between
cues and targets, with rTPJ coding mismatches between
cues and targets and lTPJ coding with cue–target matches
(Doricchi et al., 2010). Moreover, previous task-based
fMRI studies on other attentional functions have shown
that effective connectivity between lTPJ and rTPJ is re-
lated to enhanced filtering of distractors in a partial
report paradigm (Vossel et al., 2016). Our results also
support and extend findings from patient studies that
interhemispheric parietal and temporoparietal inter-
actions are essential for attentional functions (Siegel
et al., 2016; Baldassarre et al., 2014; Carter et al., 2010;
He et al., 2007). These studies emphasize that a decrease
in interhemispheric rsFC, presumably due to an imbal-
ance between both hemispheres after stroke, is related
to impaired performance in a location-cueing task and
cancellation tests.
Besides, patient studies investigating the effects of non-

invasive brain stimulation over parietal cortex for the
recovery of neglect symptoms after stroke showed that
stimulation protocols could improve impaired behavior
(see Salazar et al., 2018, for a review). For instance, both
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cathodal direct current stimulation of the unlesioned
posterior parietal cortex and anodal stimulation of the le-
sioned homologous region reduced symptoms of neglect
(Sparing et al., 2009). Furthermore, inhibitory TMS on the
contralesional left parietal cortex likewise ameliorated
neglect (Nyffeler et al., 2019). However, the response rate
to the stimulation depended on the integrity of the inter-
hemispheric connections, especially of the corpus callosum
connecting homologous parietal regions (Nyffeler et al.,
2019). This is in line with findings of healthy participants,
where the structural variability within the corpus callosum
was a predictor for the individual differences in the effects
of inhibitory TMS on the posterior parietal cortex on the
allocation of spatial attention (Chechlacz, Humphreys,
Sotiropoulos, Kennard, & Cazzoli, 2015). Consequently, an
amelioration of the interhemispheric rsFC between the
posterior parietal cortices was found to be associated with
the recovery of neglect symptoms (Ramsey et al., 2016),
which again emphasizes the importance of intact inter-
hemispheric rsFC for cognitive functions. Here, we show
that this is not only relevant for attentional functions, but
also the updating of probabilistic beliefs.
However, our present results not only suggest that resting-

state connectivity per se is relevant for cognitive functions but
also that cognitive processing during a task can change con-
nectivity patterns afterwards in a performance-dependent
manner. It has been proposed that the rsFC pattern of a per-
sonmay be seen as a trait that can be used to predict behavior
and disease (Khosla, Jamison, Ngo, Kuceyeski, & Sabuncu,
2019; Craddock, Holtzheimer, Hu, & Mayberg, 2009).
Although our findings are in accord with this notion, they
also suggest that the relationship between rsFC and be-
havior may be more complex, with mutual interactions
between cognitive processing and resting-state connectiv-
ity architectures.

Conclusions

We have provided resting-state fMRI evidence that rsFC
before task and changes in rsFC from pre- to posttask
of the rTPJ are related to belief updating and reorienting
in a Posner task with uncertain contingencies between
cues and targets. Therefore, this study highlights the mu-
tual influence of functional connectivity during rest and
behavior. Moreover, it identifies IPS as a crucial network
node for rTPJ for the flexible deployment of attention in
relation to inferred cue validity.
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